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REVIEW ARTICLE

Lesion-symptom mapping in the study of spoken language understanding
Stephen M. Wilson

Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA

ABSTRACT
Lesion-symptom mapping studies aim to make inferences about the functional neuroanatomy of
spoken language understanding by investigating relationships between damage to different
brain regions and the various speech perception and comprehension deficits that result. Voxel-
based lesion-symptom mapping, voxel-based morphometry, and studies focused on specific
cortical regions of interest or fibre pathways have all yielded insights regarding the localisation
of different components of spoken language processing. Major challenges include the fact that
brain damage rarely impacts just a single brain region or just a single processing component,
and that neuroplasticity and recovery can complicate the interpretation of lesion-deficit
correlations. Future studies involving large patient cohorts derived from multi-centre projects,
and multivariate approaches to quantifying patterns of brain damage and patterns of linguistic
deficits, will continue to yield new insights into the neural basis of spoken language understanding.
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Historical background

Lesion-symptom mapping studies seek to make infer-
ences about the functional neuroanatomy of linguistic
or cognitive processes by investigating relationships
between damage to different brain regions and the
behavioural deficits that result. This general approach
dates back to the seminal contributions of Broca (1861)
and Wernicke (1874), and some even earlier observations
(Benton & Joynt, 1960). Although some early authors
studied series of patients (Moutier, 1908), much of the
early literature was dominated by case reports of single
patients (Caplan, 1987). This was a significant limitation,
because it was unclear how generalisable many of the
findings were.

The emergence of computed tomography (CT) and
magnetic resonance imaging (MRI) in the 1970s and
1980s made it possible to identify lesion locations
before waiting potentially decades for patients to come
to autopsy. This made it much more feasible to investi-
gate brain-behaviour relationships in series of patients,
so that common principles of functional organisation
could be determined. The most prevalent approach in
the first few decades of neuroimaging-based lesion-
symptom mapping was to “overlay” representations of
the lesions of patients with a common clinical syndrome,
in order to determine which brain regions were invari-
ably associated with the syndrome (Mohr, 1976).

In some of the earliest applications of this approach to
disorders of spoken language understanding, Kertesz,

Lesk, and Mccabe (1977) and Naeser and Hayward
(1978) overlaid the lesions of patients with Wernicke’s
aphasia. Both studies demonstrated consistent involve-
ment of the left superior temporal gyrus. Kertesz,
Sheppard, and MacKenzie (1982) showed that trans-
cortical sensory aphasia, which involves a comprehension
deficit of a distinct nature to that of Wernicke’s aphasia,
was associated with a different lesion localisation, specifi-
cally posterior inferior temporal and occipital regions. The
lesion overlay approach was not limited to focal damage
caused by stroke. For instance, the neurodegenerative
syndrome of semantic dementia, which involves impaired
single word comprehension among other semantic defi-
cits, was shown to be consistently associated with
damage to the anterior temporal lobes (Hodges, Patter-
son, Oxbury, & Funnell, 1992; Mummery et al., 2000).

In the 1990s, researchers began to derive lesion over-
lays not just for clinical syndromes (that is, constellations
of symptoms), but for specific functional deficits (that is,
single symptoms). In the domain of language, expressive
functions including naming (Damasio, Grabowski, Tranel,
Hichwa, & Damasio, 1996) and speech motor planning
and programming (Dronkers, 1996) were investigated.
Researchers also began to go beyond lesion overlays,
for instance by presenting complementary lesion overlays
of patients who lacked the deficit in question (Dronkers,
1996), by computing various statistics voxel-by-voxel to
quantify the impact of damage to each voxel on perform-
ance (Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000;
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Bates et al., 2003), and by using multivariate analyses to
investigate the contributions of multiple brain regions
(Caplan, Hildebrandt, & Makris, 1996; Caplan et al., 2007).

The first large-scale application of a symptom-specific
approach to spoken language understanding was a
study by Bates et al. (2003), who investigated the
neural correlates of auditory language comprehension
in 101 patients with chronic aphasia due to left hemi-
sphere stroke. Statistics were computed on a voxel-by-
voxel basis, and the resulting map showed that
damage to the left posterior middle temporal gyrus
was most predictive of comprehension deficits, a more
ventral lesion localisation than might have been
expected based on the classical model of the neural
organisation of language. Another contribution of this
study was the proposal that continuous behavioural
measures, rather than defined cut-off scores, should be
used for lesion-symptom mapping, on the grounds that
this makes best use of all available data.

Voxel-based approaches utilising continuous behav-
ioural measures also proved effective in neurodegenera-
tive populations. For instance, Amici et al. (2007)
investigated sentence comprehension in 58 patients
with primary progressive aphasia or other neurodegen-
erative syndromes, and showed that deficits in the com-
prehension of complex syntactic structures were
associated with atrophy of specific left inferior frontal
regions.

Overview of the method

Most modern studies use voxel-based approaches, in
which statistical computations are carried out for each
individual voxel to quantify the extent to which structural
integrity of that voxel is associated with the language
variable(s) of interest. Voxel-based lesion-symptom
mapping (VLSM; Bates et al., 2003) and voxel-based mor-
phometry (VBM; Ashburner & Friston, 2000) are two par-
ticularly widely used approaches, the most fundamental
difference between them being whether the structural
integrity of each voxel is modelled as binary, in the
case of VLSM, or graded, in the case of VBM (Geva,
Baron, Jones, Price, & Warburton, 2012). This section out-
lines the general steps that are common toVLSMandVBM
analyses (several commonly used software packages are
listed in Appendix 1). Then, other approaches are dis-
cussed which do not involve calculations for each voxel,
but rather quantify the impact of damage to specific
regions of interest (Caplan et al., 1996, 2007) or white
matter pathways (Wilson et al., 2011).

In VLSM and VBM studies, the first step is to define a
cohort of patients. In order to identify brain-behaviour
relationships, the group of patients needs to exhibit

variability in terms of the behavioural variable(s) of inter-
est, and also in terms of whether or not brain regions
hypothesised to be important for those function(s) are
damaged. Most successful VLSM and VBM studies have
been based on groups of at least 50–100 patients.

Second, brain damage needs to be quantified on a
voxel-by-voxel basis. VLSM assumes that lesions are dis-
crete, that is, each voxel is either lesioned or it is not. This
is generally appropriate for neurological populations
such as stroke and resective surgery in which lesions
are largely discrete. Most researchers consider manual
drawing of lesions to be the “gold standard” for lesion
delineation. One method is to draw each patient’s
lesion on a template in a single, common space (e.g.
Bates et al., 2003; Damasio et al., 1996). That way, the
impact of large lesions on brain morphology (e.g. expan-
sion of adjacent ventricles) can be considered and taken
into account. However, drawing lesions on templates
requires great expertise and invariably involves subjec-
tivity. A alternative is to draw each patient’s lesion on
their own MRI or CT image, and then warp each brain
(and associated lesion mask) to standard space (e.g.
Wilson et al., 2015). This method is somewhat easier to
implement, because the correspondence between the
patient’s brain and standard space is handled by the
warping algorithm (e.g. Ashburner & Friston, 2005), but
it may be less accurate, because normalisation algor-
ithms do not always fare well in mapping distorted
brains to standard space.

An alternative to manual delineation of lesions is the
use of fully automated or semi-automated lesion
segmentation algorithms (Leff et al., 2009; Seghier,
Ramlackhansingh, Crinion, Leff, & Price, 2008; Tyler,
Marslen-Wilson, & Stamatakis, 2005). This approach has
the advantage of being objective and quick, which is
important when studying large groups of patients. The
correspondence between automatically and manually
delineated lesions is presently only modest (Wilke, de
Haan, Juenger, & Karnath, 2011), but continued advances
in automated lesion delineation (Griffis, Allendorfer, &
Szaflarski, 2016; Pustina et al., 2016) offer the promise
of increasingly robust and valid methods that may in
time perform as well if not better than manual delinea-
tion (Crinion, Holland, Copland, Thompson, & Hillis,
2013).

In contrast to VLSM, VBM is intended for neurological
populations in which damage is graded. In the domain of
spoken language understanding, patients with neurode-
generative disease have been particularly informative.
Since damage is graded, only automated approaches
are used. Segmentation algorithms are used to estimate
grey matter, white matter and cerebrospinal fluid (CSF)
proportions in each voxel, in order to identify regions
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exhibiting parenchymal volume loss. The most widely
used algorithm is the “unified segmentation” procedure
implemented in statistical parametric mapping (SPM)
(Ashburner & Friston, 2005), which estimates grey
matter, white matter and CSF densities while simul-
taneously performing bias correction and warping to
standard space. Many recent studies use the DARTEL
algorithm (Ashburner, 2007) which performs more ana-
tomically precise registration (Klein et al., 2009). Analyses
are usually based on estimated grey matter density (e.g.
Gorno-Tempini et al., 2004), but it is also possible to use
VBM to look at white matter density (e.g. Rohrer et al.,
2010), or to sum grey matter and white matter densities
to obtain a general measure of parenchymal atrophy
(Wilson et al., 2010).

The third step in VLSM and VBM studies is to calculate
statistical relationships between damage to each voxel
and behavioural variable(s) of interest. VLSM and VBM
are mass univariate approaches, similar to standard
fMRI analyses. This means that each voxel is analysed
independently of any other voxels. In VLSM, a t-test is
performed at each voxel comparing patients with
damage to the voxel to those without damage on the
measure(s) of interest. In VBM, correlations are computed
between grey matter density (or whatever metric of
structural integrity is being used) and the behavioural
measure(s) of interest.

Fourth, these statistical maps are corrected for mul-
tiple comparisons in order to avoid false positives due
to the thousands of voxels in the brain. For VBM, Gaus-
sian random field theory has been shown to effectively
correct for multiple comparisons when using a corrected
threshold, but not when using approaches based on
cluster extent (Ashburner & Friston, 2000). For VLSM
and VBM, many researchers have elected to control the
false discovery rate (e.g. Bates et al., 2003), however it
is unclear exactly how the non-independence of the mul-
tiple tests impacts this approach, and it does not control
family-wise error. The author recommends the use of
permutation-based thresholding methods, in which
lesions and behavioural data are randomly reassigned
many times in order to determine how likely the
observed results would be under the null hypothesis
that there is no relationship between lesion location
and behaviour. This approach makes no problematic
assumptions about the structure of the data, and is
easy to implement now that the necessary computing
power is readily available (Kimberg, Coslett, & Schwartz,
2007; Nichols & Holmes, 2002).

The line between VLSM and VBM is often blurred. For
instance, Leff et al. (2009) used VBM in a study of stroke
patients, assuming that lesions would be segmented as
containing negligible grey matter, and that furthermore,

there might be volume loss remote from the site of
infarction that this approach would be sensitive to (see
Geva et al. (2012) for an empirical comparison of VLSM
and VBM in stroke patients, and a discussion of the
advantages and disadvantages of each approach). In
another study, Wilson et al. (2015) performed manual
delineation of lesions, yet smoothed the resulting
lesion masks in order to account for inter-individual
variability. Because the lesion masks were smoothed,
estimates of structural integrity were continuous rather
than binary.

There are other approaches to lesion-symptom
mapping that do not involve voxel-by-voxel compu-
tations. Some researchers quantify the extent to which
anatomical regions of interest are lesioned, and then
use these estimates as independent variables to predict
behavioural measure(s) of interest (Caplan et al., 1996,
2007). With sufficient numbers of patients, multivariate
analyses are then feasible, which could potentially
show differential or interacting effects of damage to
different regions. A limitation of this approach is that a
priori hypotheses are required regarding which regions
of interest to investigate. Another line of work investi-
gates whether the integrity of white matter tracts are
predictive of language deficits. Tract integrity can be
quantified in terms of fractional anisotropy (Wilson
et al., 2011) or other diffusion tensor imaging metrics
(Galantucci et al., 2011), especially when damage is
graded as in neurodegenerative disease. Alternatively,
the integrity of tracts can be quantified by determining
to what extent the tracts have been impacted by
lesions (Griffiths, Marslen-Wilson, Stamatakis, & Tyler,
2013; Han et al., 2013).

Challenges and solutions for studying spoken
language

The structural images and behavioural measures that go
into lesion-symptom mapping analyses are both static,
so there are no particular limitations on the experimental
conditions under which deficits in spoken language
understanding can be characterised. There are,
however, general limitations to these approaches that
need to be considered.

The most fundamental limitation of VLSM and VBM is
that the statistic for each voxel is computed indepen-
dently of any other voxel, yet behavioural deficit(s) are
caused not by damage to a single voxel, but by
damage to one or more brain regions, each of which con-
tains many voxels. This implies that a statistically signifi-
cant relationship between damage to a voxel and a
behavioural deficit can never be taken at face value. It
might be that the voxel in question really is important
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for the behaviour, but alternatively, it could be that
neighbouring structures, typically damaged simul-
taneously with the voxel, are really critical for the func-
tion in question. For instance, it has been argued that
motor speech deficits are caused not by damage to the
anterior insula (Dronkers, 1996), but rather by damage
to the white matter pathways which run medial to it
(Bonilha & Fridriksson, 2009). Or, it could be that the
voxel does play a role, but that deficits only occur if
other structures are damaged too. For instance, a small
inferior frontal lesion does not cause persistent agram-
matism, but a large fronto-parietal lesion does (Mohr,
1976). False negatives are possible too, especially for
functions that are supported by both hemispheres.
Even though primary auditory cortex in both hemi-
spheres appears to be able to support early stages of
spoken language understanding, an isolated lesion to
left auditory cortex often does not result in any persistent
deficits unless right auditory cortex is damaged too, so
voxel-based methods may not show a significant
relationship between left or right auditory cortex and
any language measure.

These problems can be addressed by carrying out ana-
lyses which include the structural integrity of multiple
brain regions as independent variables. One way to do
this is to covary out the lesion status of other regions
that might be important for the function of interest (e.g.
Bates et al., 2003). Another possibility is to perform post
hocmultiple regression analyses that model the function
in terms of the potentially interacting contributions from
multiple distinct brain regions (Rankin et al., 2009; Wilson
et al., 2015). As mentioned above, some authors do not
use voxel-based analyses at all, but rather skip straight
to multivariate analyses involving multiple regions of
interest (Caplan et al., 1996, 2007). The success of multi-
variate analyses depends on having very large numbers
of patients, because the sample must contain patients
representing different combinations of regions
damaged, in order to determine which region(s) are actu-
ally important for the function of interest.

Another ubiquitous limitation of lesion-symptom
mapping studies is that patients generally recover to
varying extents from strokes and from other neurological
insults, implying that there is considerable cortical plas-
ticity, so a lesioned brain is not just a brain with some
pieces missing: it is a brain with some pieces missing and
with the remaining pieces reorganised to some unknown
extent. The most obvious way to address this limitation is
to study patients acutely. This is challenging from a practi-
cal standpoint, and also because there are often other
factors at play early after a brain injury, such as oedema
and hypoperfusion, that may complicate the picture in
different ways. However, several lesion-symptom

mapping studies have successfully demonstrated specific
regions associated with various component processes of
spoken language understanding in acute stroke patients
(Kümmerer et al., 2013; Newhart, Ken, Kleinman, Heidler-
Gary, & Hillis, 2007; Newhart et al., 2012; Race, Ochfeld,
Leigh, & Hillis, 2012; Rogalsky, Pitz, Hillis, & Hickok, 2008;
Tsapkini, Frangakis, & Hillis, 2011) or resective surgery
patients in the immediate post-operative period (Wilson
et al., 2015).

Key empirical contributions

Lesion-symptom mapping studies over the past decade
or so have begun to paint a picture of the large-scale
organisation of the brain regions involved in spoken
language understanding.

The neural substrates of word-level comprehension
have been investigated in a number of lesion-symptom
mapping studies. In particular, VBM studies in patients
with primary progressive aphasia and other neurodegen-
erative diseases have shown that comprehension of
single words is associated with atrophy of left anterior
temporal regions (Mesulam, Thompson, Weintraub, &
Rogalski, 2015; Mummery et al., 2000; Rogalski et al.,
2011; Sapolsky et al., 2010). While some authors have
argued that the tip of the temporal lobe is the most criti-
cal region (Mesulam et al., 2013), a recent multivariate
analysis in 110 patients who had undergone resective
surgery showed that damage to a region in the fusiform
gyrus approximately 6 cm posterior to the temporal pole
is predictive of semantic deficits, not the temporal pole
itself (Wilson et al., 2015; see also Mion et al., 2010). In
stroke patients, single word comprehension specifically
has rarely been investigated. Bates et al. (2003) used a
composite measure of comprehension that included
word-level and sentence-level components, however
an analysis using only the word-level data (the auditory
word recognition subscore from the Western Aphasia
Battery) showed that damage to the posterior middle
temporal gyrus is similarly associated with word-level
comprehension deficits (Wilson and Dronkers, unpub-
lished observations), that is, the same region that was
associated with comprehension deficits in general (see
also Saygin, Dick, Wilson, Dronkers, & Bates, 2003).
Another study in acute stroke patients suggested that
infarction or hypoperfusion of both anterior and pos-
terior temporal regions contributes to word-level com-
prehension deficits (Newhart et al., 2007). These
diverging findings from primary progressive aphasia
and stroke remain to be reconciled; one recent proposal
is that word-level comprehension deficits after posterior
temporal damage in stroke are caused by lesion exten-
sion into the underlying white matter, which disconnects
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anterior temporal regions from other perisylvian
language regions (Mesulam et al., 2015).

Sentence-level comprehension has been investigated
in a number of well-designed and relatively well-
powered lesion-symptom mapping studies. The most
commonly implicated regions have been left inferior
frontal cortex, left superior temporal cortex, and left
inferior parietal cortex, with many studies reporting
one or more of these regions to be implicated in sen-
tence-level comprehension (Amici et al., 2007; Dronkers,
Wilkins, Van Valin, Redfern, & Jaeger, 2004; Fridriksson,
Fillmore, Guo, & Rorden, 2015; Leff et al., 2009; Newhart
et al., 2012; Rogalski et al., 2011; Teichmann et al.,
2015; Thothathiri, Kimberg, & Schwartz, 2012; Wilson
et al., 2011; Wilson, Galantucci, Tartaglia, & Gorno-
Tempini, 2012). Some studies have suggested that
specific regions within this network have specific func-
tions, such as a role for inferior frontal cortex in processing
syntactically complex sentences (Amici et al., 2007), and a
role for the posterior superior temporal gyrus in auditory
short-term memory in support of sentence comprehen-
sion (Leff et al., 2009; Wilson et al., 2012). Damage to
dorsal white matter fibre pathways connecting frontal
and posterior language regions has also been shown to
impair syntactic processing above and beyond damage
to grey matter (Wilson et al., 2011). Not all studies have
supported this general picture: some authors have
argued that damage to anterior temporal regions (Dron-
kers et al., 2004; Magnusdottir et al., 2013) or ventral path-
ways (Griffiths et al., 2013) can result in syntactic
processing deficits, and other authors have not observed
any regions to be systematically associated with syntactic
deficits (Caplan et al., 1996, 2007; Caplan, Michaud,
Hufford, & Makris, 2015). For further discussion, see
Wilson et al. (2012, 2014).

In contrast to the rich findings on word-level and sen-
tence-level comprehension, lesion-symptom mapping
studies have made only modest contributions to our
understanding of prelexical stages of spoken language
understanding. This may be because much of this pro-
cessing is bilaterally redundant, so genuine prelexical
deficits are rare (Poeppel, 2001). Probably the most
notable finding bearing on prelexical spoken language
processing is a recent study of 99 stroke patients that
showed that a derived factor reflecting measures includ-
ing auditory lexical decision and phoneme discrimi-
nation was associated with damage to the left planum
temporale and the dorsal part of the superior temporal
gyrus (Mirman et al., 2015). This speech perception
factor had clearly distinct neural correlates to a speech
production factor which was affected by damage to
immediately adjacent regions dorsal to the Sylvian
fissure.

Many other aspects of spoken language understand-
ing have been investigated using lesion-symptom
mapping. Some examples include the relationship
between regions involved in comprehending words
and environmental sounds (Saygin et al., 2003), gramma-
ticality judgement (Wilson & Saygin, 2004), narrative and
discourse comprehension (Ash et al., 2012; Barbey,
Colom, & Grafman, 2014), lexical and semantic access
(Harvey & Schnur, 2015), and paralinguistic features
such as voice identity, accent, and emotional prosody
(Hailstone et al., 2011, 2012; Rankin et al., 2009; Rohrer,
Sauter, Scott, Rossor, & Warren, 2012).

Future directions

One of the most exciting new directions in lesion-
symptom mapping of spoken language understanding
is Price and colleagues’ “Predicting Language Outcome
and Recovery After Stroke (PLORAS)” study (Price,
Seghier, & Leff, 2010). This is a large multi-site study in
the United Kingdom which had already recruited 750
patients as of early 2015 (Seghier et al., 2016). Structural
scans and behavioural data are acquired from all
patients, and functional imaging data are also acquired
from some patients. The data will be made available
for others in the research community to analyse. What
makes this study groundbreaking is the size of the
patient cohort, which is an order of magnitude larger
than most of the large studies to date. Such a substantial
patient cohort will ensure that there are enough patients
with similar yet distinct lesions, so that subtle effects of
lesion size and distribution on different aspects of
language processing can be quantified. Multivariate ana-
lyses in which behaviour is predicted based on multiple
regions of interest will become feasible when the sample
size is large enough.

A second promising direction is the application of
machine learning techniques and other multivariate
approaches to lesion-symptom mapping. Machine learn-
ing algorithms such as support vector machines have
been used to uncover relationships between distributed
lesions and clinical syndromes including stroke (Saur
et al., 2010), primary progressive aphasia (Wilson et al.,
2009), and other neurodegenerative diseases (Klöppel
et al., 2008). Recent studies have investigated relation-
ships between lesions and specific symptoms using
similar approaches (Xing et al., 2016; Yourganov, Smith,
Fridriksson, & Rorden, 2015; Zhang, Kimberg, Coslett,
Schwartz, & Wang, 2014). On the behavioural side, con-
stellations of deficits have also been analysed from a
multivariate perspective using principal components
analysis (Butler, Ralph, & Woollams, 2014; Mirman et al.,
2015). These new approaches should allow researchers
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to overcome some of the limitations of the mass univari-
ate approach that have been identified (Inoue, Mad-
hyastha, Rudrauf, Mehta, & Grabowski, 2014; Mah,
Husain, Rees, & Nachev, 2014).

Finally, lesion-symptom mapping needs to be used in
conjunction with other cognitive neuroscience tech-
niques such as task-based and connectivity-based func-
tional MRI, perfusion imaging, and diffusion tensor
imaging in order to probe the functionality of surviving
tissue and its potential reorganisation (Saur &Hartwigsen,
2012; Specht et al., 2009; Warren, Crinion, Lambon Ralph,
& Wise, 2009; Wilson et al., 2014). Combining structural
and functional neuroimaging modalities will provide a
more complete picture of which brain regions are critical
for different aspects of spoken language understanding,
as well as the potential of other regions to carry out
these functions when the preferred regions are damaged.
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Appendix 1: Software resources

The program most commonly used to manually delineate
lesions is mricron (Rorden & Brett, 2000; http://people.cas.sc.
edu/rorden/mricron/index.html). Another excellent program
that can be used for lesion delineation is ITK-SNAP (Yushkevich
et al., 2006; http://www.itksnap.org).
Intersubject normalisation is most often performed with SPM
(Friston, Ashburner, Kiebel, Nichols, & Penny, 2007; http://
www.fil.ion.ucl.ac.uk/spm) using either the unified segmenta-
tion (Ashburner & Friston, 2005) or DARTEL (Ashburner, 2007)
algorithms. Another good choice is ANTS (Avants, Epstein,
Grossman, & Gee, 2008; http://stnava.github.io/ANTs).
VLSM and VBM can be carried out with the author’s MATLAB
toolbox vlsm (Bates et al., 2003; http://langneurosci.mc.
vanderbilt.edu/resources.html), with NPM (Rorden, Karnath, &
Bonilha, 2007; included with mricron), or with any mainstream
neuroimaging analysis package, such as SPM (Friston et al.,
2007; http://www.fil.ion.ucl.ac.uk/spm). The Statistical Non-
Parametric Mapping (SnPM) toolbox (Nichols & Holmes,
2002; http://warwick.ac.uk/snpm) is recommended for use
with SPM.
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